Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yan-Ling Wang, Wen-Tao Yu, Hong-Yu Chen, Dong Xu* and Wen-Feng Guo

State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China

Correspondence e-mail:
wangy!@icm.sdu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.038$
$w R$ factor $=0.106$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography All rights reserved

Bis(N-ethylpyridinium) bis(2-thioxo-1,3-dithiole-4,5-dithiolato)zincate(II)

In the title compound, $\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}\right)_{2}\left[\mathrm{Zn}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right]$, the $\mathrm{Zn}^{\mathrm{II}}$ ion is located on a twofold axis and coordinated by four 2-thioxo-1,3-dithiole-4,5-dithiolate S atoms with a distorted tetrahedral geometry. The asymmetric unit contains two independent N ethylpyridinium cations, each having mirror symmetry.

Comment

$\left[\mathrm{Zn}(\mathrm{dmit})_{2}\right]^{2-}$ salts (dmit is 2-thioxo-1,3-dithiole-4,5-dithiolate) have attracted much attention because of promising optical properties (Li et al., 1996; Xia et al., 1997; Dai et al., 2000; Sun et al., 2001). As part of an investigation of organic optical materials, the title compound, (I), was recently prepared in our laboratory.

(I)

The crystal structure of (I) consists of $\left[\mathrm{Zn}(\mathrm{dmit})_{2}\right]^{2-}$ anions and ethylpyridinium cations (Fig. 1). The anion has C_{2} symmetry. The $\mathrm{Zn}^{\mathrm{II}}$ ion is located on a twofold axis and coordinated by four S atoms from two dmit ligands with a distorted tetrahedral geometry (Table 1). The dihedral angle between dmit planes is 69.44 (18) ${ }^{\circ}$. The $\mathrm{Zn}^{\mathrm{II}}$ ion deviates from each dmit mean plane by 0.230 (1) \AA. Both independent cations have mirror symmetry, with the ethyl C atoms, pyridine N atoms, and atoms C5 and C13 lying on the mirror planes.

In the crystal structure of (I), the $\mathrm{S} 2 \cdots \mathrm{~S} 2^{\mathrm{iii}}$ separation of 3.6304 (13) \AA [symmetry code: (iii) $\frac{1}{2}-x, 1 / 2-y, 1-z$] is much longer than 3.492 (2) \AA found in a similar compound, bis(N-methylpyridinium) $\left[\mathrm{Zn}\left(\mathrm{dmit}_{2}\right]\right.$ (Wang et al., 2005), and indicates the normal van der Waals contact between S atoms.

Experimental

The title complex was prepared according to a literature procedure (Steimeck \& Kirmse, 1979). The single crystals of (I) used for X-ray structure analysis were obtained by slow evaporation of an acetone solution of (I) at room temperature.

Crystal data

$\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}\right)_{2}\left[\mathrm{Zn}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right]$	$D_{x}=1.593 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=674.35$	Mo $K \alpha$ radiation
Monoclinic, $C 2 / m$	Cell parameters from 3979
$a=19.948(4) \AA$	reflections
$b=14.733(3) \AA$	$\theta=2.1-24.9^{\circ}$
$c=10.001(2) \AA$	$\mu=1.63 \mathrm{~mm}^{-1}$
$\beta=106.934(2)^{\circ}$	$T=298(2) \mathrm{K}$
$V=2811.7(10) \AA^{3}$	Block, red
$Z=4$	$0.79 \times 0.68 \times 0.45 \mathrm{~mm}$

Received 11 January 2006
Accepted 20 February 2006

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.280, T_{\text {max }}=0.476$
7034 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.106$
$S=1.06$
2593 reflections
162 parameters
H -atom parameters constrained

2593 independent reflections
2229 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-23 \rightarrow 23$
$k=-17 \rightarrow 15$
$l=-11 \rightarrow 11$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0651 P)^{2}\right. \\
\quad+1.3911 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }= \\
\hline
\end{array} \mathrm{O}^{2} .97 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{Zn} 1-\mathrm{S} 4$	$2.3323(9)$	$\mathrm{S} 3-\mathrm{C} 1$	$1.721(3)$
$\mathrm{Zn} 1-\mathrm{S} 5$	$2.3429(8)$	$\mathrm{S} 3-\mathrm{C} 3$	$1.738(3)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.650(3)$	$\mathrm{S} 4-\mathrm{C} 3$	$1.734(3)$
$\mathrm{S} 2-\mathrm{C} 1$	$1.713(3)$	$\mathrm{S} 5-\mathrm{C} 2$	$1.742(3)$
$\mathrm{S} 2-\mathrm{C} 2$	$1.746(3)$		

H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Bruker, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by grants from the High Technology Development Project of China (No. 2002 A A313070) and the Natural Science Foundation of China (60476020, 60377016 and 50272037).

Figure 1
The structure of (I), with 50% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry codes: (i) $-x, y, 1-z$; (ii) x, $-y, z]$.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SMART (Version 5.624), SAINT (Version 6.02a) and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Dai, J., Bian, G.-Q., Wang, X., Xu, Q.-F., Zhou, M.-Y., Munakata, M., Maekawa, M., Tong, M.-H., Sun, Z.-R. \& Zeng, H.-P. (2000). J. Am. Chem. Soc. 122, 11007-11008.
Li, H., Huang, C.-H., Xu, J., Li, T., Zhao, X. \& Xia, X. (1996). J. Chem. Soc. Faraday Trans. 92, 2585-2592.
Steimeck, G. \& Kirmse, R. (1979). Phosphorus Sulfur, 7, 49-55.
Sun, Z.-R., Tong, M.-H., Zeng, H.-P., Ding, L.-G., Wang, Z.-G., Xu, Z.-Z., Dai, J. \& Bian, G.-Q. (2001). Chem. Phys. Lett. 342, 323-327.

Wang, Y.-L., Yu, W.-T., Xu, D., Wang, X.-Q., Guo, W.-F. \& Zhang, G.-H. (2005). Acta Cryst. E61, m2408-m2410.
Xia, W.-S., Huang, C.-H. \& Zhou, D.-J. (1997). Langmuir, 13, 80-84.

